Models for the calculation of upper and lower limiting values to the backscatter factor (BSF) are presented. The upper limit is obtained from Monte Carlo simulations of infinite parallel beams incident on semi-infinite phantoms with the dose contributions from all orders of photon scatter considered. The lower limits are calculated using an analytical photon transport model which considers only the primary dose and the scatter dose from photons that have undergone single scattering interactions in the phantom. The limiting values can be used to evaluate measured and modelled BSF values for x-ray beams with photons of 150 keV. A parametrization of the limiting values in terms of photon energy and irradiation field size is presented so that results determined for monoenergetic beams can be extended to polyenergetic spectra. The utility of the limits is illustrated by comparisons made with BSFs from the literature.