Adopting the low-temperature hydrogen evaporated from the liquid hydrogen is capable of improving volumetric efficiency for the Wankel rotary engine (WRE). Considering the difficulty in ignition and slow flame propagation of low-temperature hydrogen-air mixtures, the passive pre-chamber is used to improve ignition and combustion. A three-dimensional computational fluid dynamics model for a turbulent jet ignition (TJI) WRE fueled by low-temperature hydrogen was established. The effects of low temperature and TJI on the in-cylinder flow field, combustion, emissions and leakage in the TJI-WRE fueled by low-temperature hydrogen were studied under different ignition timings. The results indicated that low-temperature tends to suppress the flame propagation, whereas TJI can accelerate the flame speed and promote flame propagation to the unburned zone in the combustion chamber. Combining low-temperature hydrogen with the passive pre-chamber can achieve high engine thermal efficiency and power while significantly reducing leakage. With the ignition timing set at 18 °CA before the top dead center, the indicated thermal efficiency reached 39.49% and the indicated mean effective pressure peaked at 0.77 MPa. Compared to the original engine, fresh mixture leakage through spark plug cavities and adjacent chambers was reduced by 72.13% and 78.79%, respectively.
Read full abstract