Purpose – Customer support has always been considered a competitive advantage in many industries. In recent years, firms have begun to provide customers with a high-quality service experience, in order to attract more customers and achieve higher customer satisfaction. Although customer service and satisfaction have been discussed by other researchers, to the knowledge, there has been no dynamic and intelligent way to model and optimize customer support systems for product and service providers. The purpose of this paper is to develop a modeling method for customer support optimization. Design/methodology/approach – In this study, a system dynamics (SD) model has been formulated to investigate the dynamic characteristics of customer support in an IT service provider. The proposed simulation model considers the dynamic, non-linear, and asymmetric interactions among its components, and allows study of the behavior of the customer support system under controlled conditions. Furthermore, a particle swarm optimization method was developed to investigate the proper combination of parameters and strategy development of the support center. Findings – This paper proposes a novel modeling, simulation, and optimization approach for complex customer support systems of information and communications technology (ICT) service providers. This method helps managers improve their customer support systems. Moreover, the simulation results of the case study show that ICT service providers can gain benefit by managing their customer service dynamically over time using the proposed artificial intelligent multi-parameter modeling and optimization method. Research limitations/implications – The proposed holistic modeling approach and multi-parameter optimization method will greatly help managers and researchers understand the factors influencing customer support. Moreover, it facilitates the process of making new improvement strategies based on provided insights. Originality/value – The paper shows how SD simulation and multi-parameter optimization can provide insights into the field of customer support. However, the existing literature lacks a holistic view of these kinds of simulation systems, as well as a multi-parameter optimization method for SD methodology.