ABSTRACT Breast cancer is cancer that forms in the cells of the breasts and is a severe health issue that affects many people around the world, especially since it is the most deadly cancer in women. By finding it early and using new treatments, patients can overcome this challenge and get back to a healthier life. This study proposed a procedure to fine-tune the Convolutional Neural Networks (CNN) model with data preprocessing and augmentation in classifying mammogram images called the Hybrid Mammogram Classification and Detection Pipeline (HMCaD). After using CNN for classification because it brings higher confidence in classifying tasks, the YOLOv8 has been applied for localization subtask to detect abnormal positions with predicted bounding boxes. The database is provided by the Mammographic Image Analysis Society (MIAS) and is protected by the United Kingdom. It comprises 330 samples, including 79 benign, 54 malignant, and 207 normal images. As a result, the classification in our model based on the custom EfficientNetB3 model and seam carving technique received a great validation accuracy, test accuracy, and F1 score throughout three scenarios at 96.73%, 97.59%, and 97.58%, respectively. Furthermore, the area under the Receiver Operating Characteristic (ROC) curve also has a surprise result of 0.96 (i.e. AUC = 0.96 ). Moreover, YOLOv8 for detecting abnormal positions in our study achieved 83.22% in Intersection over Union (IoU). This led to the research reaching good results in classifying and detecting breast cancer by considering several performance metrics.