To obtain fundamental knowledge on the elastic response characteristics of a light-weight floating support structure of a FOWT (floating offshore wind turbine) with guywire supported tower, basic load transmission mechanism was investigated. Static analysis with elastic frame model, numerical analysis and wave tank experiment with elastically and dynamically similar segmented backbone model were conducted to clarify the dynamic elastic response characteristics of the structure. In the numerical analysis, analysis code of a rotor-floater-mooring-control coupled response NK-UTWind developed in University of Tokyo is used. It is clarified that when the rigidity of the frame structural part is low compared with guywire, the load is mainly borne by guywire under pitch motion. It was found that the tension fluctuation of guywire becomes large at wave period of 6 s when the inertial force due to pitch motion is large, and at wave period of 18–20 s when inclination of tower is larger the tension fluctuation also becomes large due to the overturning moment.
Read full abstract