The aim of this study was to produce microparticles with optimal aerodynamic diameter for deep lung delivery (i.e., 1-3μm) of a protein drug intended for systemic absorption, using a combination of generally regarded as safe (GRAS) excipients. Based on the preliminary experiments, mannitol, l-alanine, sodium alginate, chitosan and dipalmitoylphosphatidilcholine (DPPC) were chosen as excipients and human insulin as a model protein drug. Dry powders were prepared by spray-drying. Powders with varying yields (29-80%) and low tapped densities (0.22-0.38 g/cm(3)) were obtained. Scanning electron microscopy (SEM) revealed distinctive particle morphologies among formulations from isolated spherical to highly folded particles. Aerodynamic properties were assessed by next generation impactor (NGI). Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) ranged from 2.1 to 4.6 μm and 46 to 81%, respectively. A comparative study of protein release from microparticles was conducted in vitro using an open membrane system with more than 50% cumulative release in all formulations which followed different kinetic models. Insulin's integrity was investigated by spectrofluorimetry and electrophoresis, and no tangible changes were observed in the structure of insulin. Of the formulations studied, the third, containing mannitol/sodium alginate/insulin/sodium citrate showed promising characteristics, optimal for systemic delivery of proteins via deep lung deposition.