Context or problemConversion from single rice (SR) or double rice (DR) to ratoon rice (RR) is gaining growing popularity in China. Yet, a quantitative synthesis of their impact on greenhouse gas (GHG, including methane (CH4) and nitrous oxide (N2O)) emissions and grain yield has not been conducted. Objective or research questionThe objective was to evaluate the effects of conversion from SR or DR to RR on CH4 and N2O emissions, grain yield, global warming potential (GWP), and greenhouse gas intensity (GHGI) and to investigate the potential responses to different operating practices [alternate wetting-drying irrigation, nitrogen management, rice variety selection, and their multiple treatments (multiple measures)] in RR fields (oRR). MethodsIn this study, a comprehensive meta-analysis of 571-paired measurements from ratoon rice fields was conducted. ResultsOur results showed that the conversion from SR to RR significantly increased CH4 emissions, grain yield, and GWP by 35.4 %, 30.6 %, and 43.3 %, respectively. In contrast, the conversion from DR to RR decreased CH4 emissions, grain yield, and GWP by 23.2 %, 7.4 %, and 30.0 %, respectively. Interestingly, both conversions from SR or DR to RR did not affect N2O emissions but reduced GHGI in paddy fields, suggesting that RR provided an economically and ecologically sustainable rice planting model. Furthermore, on average, oRR further decreased CH4 and N2O emissions and GHGI from RR fields but did not affect grain yield. Among the existing management practices, the overall effect of multiple measures was better than that of alternate wetting-drying irrigation, nitrogen management, and rice variety selection. ConclusionsOverall, ratoon rice cropping decreased CH4 emissions and maintained rice grain yield. However, it is also necessary to further implement comprehensive cultivation strategies in the future to maximize the benefits of grain yield and GHG emissions reduction.