Abstract

None declared.Conflict of interestPlantation of Chinese fir, a popular woody tree species, faces sustainable issues such as nutrient deficiency and increasing disease threat. Rhizosphere and endophytic bacteria play important roles in plant' nutrient absorption and stress alleviation. Our understanding on the microbiome structure and functions are proceeding rapidly in model plants and some crop species. Yet, the spatial distribution and functional patterns of the bacteriome for the woody trees remain largely unexplored. In this study, we collected rhizosphere soil, non-rhizosphere soil, fine root, thick root and primary root samples of Chinese fir, and investigated the structure and distribution of bacteriome, as well as the beneficial effects of endophytic bacterial isolates. We discovered that Burkholderia and Paraburkholderia genera were overwhelmingly enriched in rhizosphere soil and the abundance of Pseudomonas genus was significantly enhanced in fine root. By isolating and testing the nutrient absorption and pathogen antagonism functions of representative endophytic bacteria species in Pseudomonas and Burkholderia, we noticed that P-solubilising functional isolates was enriched in fine root, while pathogen antagonism isolates was enriched in thick root. As a conclusion, our study revealed that the endophytic and rhizosphere environments of Chinese fir hold distinct structure and abundance of bacteriome, with potential specific functional enrichment of some bacterial clades. These findings assist us to further study the potential regulation mechanism of endophytic functional bacteria by the host tree, which will contribute to beneficial microbe application in forestry plantation and sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.