The co-gasification of biomass and plastic waste offers a promising solution for producing hydrogen-rich syngas, addressing the rising demand for cleaner energy. However, optimizing this complex process to maximize hydrogen yield remains challenging, particularly when balancing diverse feedstocks and improving process efficiency. While machine learning (ML) has shown significant potential in simulating and optimizing such processes, there is no clear consensus on the most effective regression models for co-gasification, especially with limited experimental data. Additionally, the interpretability of these models is a key concern. This study aims to bridge these gaps through two primary objectives: (1) modeling the co-gasification process using seven different ML algorithms, and (2) developing a framework for evaluating model interpretability, ultimately identifying the most suitable model for process optimization. A comprehensive set of experiments was conducted across three key dimensions, generalization ability, predictive accuracy, and interpretability, to thoroughly assess the models. Support Vector Regression (SVR) exhibited superior performance, achieving the highest coefficient of determination (R2) of 0.86. SVR outperformed other models in capturing non-linear dependencies and demonstrated effective overfitting mitigation. This study further highlights the limitations of other ML models, emphasizing the importance of regularization and hyperparameter tuning in improving model stability. By integrating Shapley Additive Explanations (SHAP) into model evaluation, this work is the first to provide detailed insights into feature importance and demonstrate the operational feasibility of ML models for industrial-scale hydrogen production in the co-gasification process. The findings contribute to the development of a robust framework for optimizing co-gasification, supporting the advancement of sustainable energy technologies and the reduction of greenhouse gas (GHG) emissions.
Read full abstract