BackgroundDisorders of the gut microbiome could be responsible for the progression of multiple organ dysfunction syndrome. In this study, we examined the effect of esmolol on the gut microbiome in a rat model of sepsis induced by cecal ligation and puncture (CLP).MethodsThe animals (n = 32) were randomly divided into 3 groups: Sham group (sham operation + normal saline treatment, n = 8), CLP group (cecal ligation and puncture + normal saline treatment, n = 12), and CLP + ESM group (cecal ligation and puncture + esmolol treatment, n = 12). After 24 h, feces in the colon were collected for 16S rRNA gene sequencing and nitric oxide analysis. In addition, colon was removed for immunohistochemical staining of inducible nitric oxide synthase (iNOS).ResultsFour rats in the CLP group and two rats in the CLP + ESM group died. The abundance of Lactobacillus in the CLP + ESM group was higher than CLP group (P = 0.048). In the linear discriminant analysis effect size analysis, Norank f Muribaculaceae, Escherichia–Shigella and Lactobacillus were the predominant bacteria in the Sham group, CLP group and CLP + ESM group, respectively. The iNOS expression in colonocytes stained by brown in the CLP group were much more than Sham group (P = 0.001). Compared to CLP group, the iNOS expression in colonocytes reduced after esmolol treatment (P = 0.013). The concentration of nitric oxide in colon feces was different in Sham group, CLP group and CLP + ESM group (1.31 ± 0.15μmmol/l vs. 1.98 ± 0.27μmmol/l vs. 1.51 ± 0.14μmmol/l, P = 0.001). In addition, the concentration of nitric oxide in CLP group was higher than Sham group (P = 0.001) or CLP + ESM group (P = 0.001).ConclusionsEsmolol increased the fecal abundance of Lactobacillus in a rat model of sepsis. Moreover, esmolol reduced the iNOS expression of colonocytes and the nitric oxide concentration of colon feces.
Read full abstract