Seventy-six participants performed a visual half-field lexical decision task at two different stimulus onset asynchronies (50 or 750 ms). Word targets were primed either by a highly associated word (e.g., CLEAN–DIRTY), a weakly associated word (e.g., CLEAN–TIDY), or an unrelated word (e.g., CLEAN–FAMILY) projected to either the same or opposite visual field (VF) as the target. In the short SOA, RVF-left hemisphere primes resulted in high associate priming regardless of target location (ipsilateral or contralateral to the prime) whereas LVF-right hemisphere primes produced both high and low associate priming across both target location conditions. In the long SOA condition, contralateral priming patterns converged, demonstrating only high associate priming in both VF locations. The results of this study demonstrate the critical role of interhemispheric transfer in semantic processing and indicate a need to elaborate current models of semantic processing.