Major depressive disorder (MDD) with diabetes mellitus (DM) significantly reduces the quality of the patient's life, and currently, there is no effective treatment. This study explored the feasibility of Glucagon-like peptide-1 (GLP-1) in treating MDD combined with DM. The protective effects of GLP-1 on mouse hippocampal neuronal cell line HT22 cultured with corticosterone (CORT) and high glucose (HG) were assessed. HT22 cells were cultured with CORT + HG to construct a cell model of MDD combined with DM. Cell viability and cell apoptosis/necrocytosis were detected by CCK-8 assay and flow cytometry/confocal laser scanning microscopy, respectively, after treatment with GLP-1. In addition, BDNF and neurotransmitter levels, lactic dehydrogenase (LDH) and glucose levels, and proteins of cAMP-CREB-BDNF signal pathway in the culture supernatants were measured through an enzyme-linked immunosorbent assay and colorimetric assays and Western blot, respectively. The ideal intervention combination to construct a cell model of MDD combined with DM was CORT 200 μM and HG 50 mM for 48 h. After treatment of 50 nM GLP-1 for 48 h, the model+50 nM GLP-1 group's apoptosis and necrocytosis rates and LDH and glucose concentrations in the culture supernatants decreased significantly compared with the model group. However, the BDNF, 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE), PKA, p-CREB, and p-Trkb concentrations in the culture supernatants increased significantly. GLP-1 functioned against CORT + HG-induced toxicity by activating the cAMP-CREB-BDNF signaling pathway in hippocampal neuronal cells.