The aim was to investigate the mediating role of inflammatory biomarkers in the causal effect of body composition on glycaemic traits and type 2 diabetes. A retrospective observational study and a Mendelian randomization (MR) study were used. Observational analyses were performed using data from 4717 Chinese children and adolescents aged 6-18 years who underwent dual-energy X-ray absorptiometry for body composition. MR analyses were based on summary statistics from UK Biobank, deCODE2021, Meta-Analysis of Glucose and Insulin-Related Traits Consortium (MAGIC) and other large consortiums. Inflammatory biomarkers included leptin, adiponectin, osteocalcin, fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH). In a retrospective observational study, increased fat mass had a positive effect on homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of pancreatic beta cell function (HOMA-β) through FGF23, whereas fat-free mass produced the opposite effects. PTH and osteocalcin played significant roles in the association of fat mass and fat-free mass with fasting glucose, fasting insulin and HOMA-IR (all p < 0.05). Mediation MR results indicated that childhood body mass index affected glycaemic traits through leptin and adiponectin. There existed a causal effect of fat-free mass on type 2 diabetes via FGF23 (indirect effect: OR [odds ratio]: 1.14 [95% CI, confidence interval: 1.01-1.28]) and adiponectin (OR: 0.85 [95% CI: 0.77-0.93]). Leptin mediated the causal association of fat mass (indirect effect: β: -0.05 [95% CI: -0.07, -0.02]) and fat-free mass (β: 0.03 [95% CI: 0.01, 0.04]) with fasting glucose. Our findings suggest that different body compositions have differential influences on glycaemic traits and type 2 diabetes through distinct inflammatory biomarkers. The findings may be helpful in tailoring management of body composition based on inflammatory biomarkers with different glycaemic statuses.
Read full abstract