Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.