Abstract

Chronic atrophic gastritis (CAG) is a prevalent preneoplastic condition of the stomach. Palmatine (PAL), an isoquinoline alkaloid isolated from Rhizoma Coptidis (RC), has significant anti-inflammatory properties and is often used to treat gastrointestinal disorders. However, the mechanism of PAL on CAG remains unclear. In this study, N-methyl-N'-nitrosoguanidine (MNNG) was used to induce CAG inflammatory disease models invivo and invitro. The efficacy of five alkaloids in RC and the dose-dependent effects of the most effective PAL in CAG mice were evaluated in two animal experiments. RNA-seq and western blot revealed that PAL significantly improved IL-17, TNF, and NF-kappa B inflammation-related signaling pathways. Further hub gene prediction and experimental validation revealed that PAL modulated the STAT1/CXCL10 axis, thereby exerting attenuation of CAG through the regulation of IL-17, TNF-α, and p-p65 expression. In conclusion, PAL was proposed to mitigate MNNG-induced CAG, potentially through the inhibition of oxidative stress and inflammatory responses via the STAT1/CXCL10 axis. This approach is an effective complement to the use of PAL in the treatment of CAG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.