Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation. Although there is a growing body of literature on vadose zone transport, few studies have explored PFAS mixture transport, particularly under conditions where nonlinear sorption processes are important. The present study aims to advance our understanding of PFAS transport in variably saturated porous media through integration of experiments and mathematical modeling. Experiments include batch studies to quantify sorption to the solid phase, interfacial tension (IFT) measurements to estimate adsorption at the air-water interface (AWI), and column studies with F-70 Ottawa sand at 100 % and ca. 50 % water saturation to explore transport mechanisms. Employed PFAS solutions encompass individual solutes and binary mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentration levels spanning four orders of magnitude to assess competitive and nonlinear sorption at the AWI. Observations demonstrate that concentration levels and competitive effects substantially influence PFAS transport in unsaturated systems. In the presence of PFOS, PFOA experienced less retention than would be anticipated based on single-solute behavior, and effluent breakthrough curves exhibited chromatographic peaking. The presented mathematical model for simultaneous flow and transport of PFAS was able to capture experimental observations with a consistent set of parameters and minimal curve fitting. These results demonstrate the robustness of the model formulation that included rate-limited interfacial mass transfer, an extended Langmuir-Szyszkowski model for adsorption at the AWI, and a scaled Leverett thermodynamic model to predict the AWI specific area. Overall, the results of this work underscore the importance of the AWI in PFAS transport and highlight the relevance of competition effects in adsorption formulations.
Read full abstract