In first-passage percolation (FPP) models, the passage time Tℓ from the origin to the point ℓeℓ satisfies f(ℓ) := ETℓ = μℓ + o(ℓ½+ε), where μ ∊ (0,∞) denotes the time constant. Yet, for lattice FPP, it is not known rigorously that f(ℓ) is eventually monotonically increasing. Here, for the Poisson-based Euclidean FPP of Howard and Newman (Prob. Theory Relat. Fields108 (1997), 153–170), we prove an explicit formula for f′(ℓ). In all dimensions, for certain values of the model's only parameter we have f′(ℓ) ≥ C > 0 for large ℓ.