Narrowband dm-spikes observed in nine intervals during five solar flares in the 1–2 GHz range were analyzed together with the RHESSI and HXRS observations. It was found that the over-frequency integrated radio flux during the spike period is closely related with the hard X-ray bursts (the correlation coefficient was 0.7–0.9) and their time delays after X-rays were 2–14 s, with one exception (March 18, 2003) where the time delay was opposite −15 s. Association of spikes with X-ray spectral characteristics enabled us to divide the spikes into two groups: (a) those observed before the soft X-ray flare maximum and, (b) those observed after this maximum. While for the spikes observed after the flare maximum no systematic spectral characteristics were found, the spikes, observed before the flare maximum were at their beginning associated with relatively hard X-ray spectra and their hardness decreased with time. The RHESSI X-ray sources were compact, only in the March 18, 2003 event an additional X-ray source appeared just at the time of the dm-spikes observation. Fourier transformation of the dynamic spectra of spikes was done to compare their dynamics with the X-ray spectral indices. No correlation between power-law spike and X-ray indices were found. It indicates that the MHD turbulence, if it plays a role, does not represent a strong connection between the spectral characteristics of the dm-spikes and associated X-ray bursts. Furthermore, the results were compared with those obtained by (Aschwanden, M.J., Güdel, M. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares. Astrophys. J. 401, 736–753, 1992) for spikes observed on lower radio frequencies. Contrary to their results, no monotonic dependence between time delays and X-ray intensities were found. Finally, the results were discussed using the model of the narrowband dm-spikes and model of electron acceleration in the collapsing magnetic trap.
Read full abstract