Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process. The regulation of floral genesis by these genes has become a significant focus of research. In the AE model of floral development, the five structural whorls (calyx, corolla, stamens, pistils, and ovules) are controlled by five groups of genes: A, B, C, D, and E. These genes interact to give rise to a complex control system that governs the floral organsgenesis. The activation or suppression of specific gene categories results in structural modifications to floral organs, with variations observed across different species. The present article examines the regulatory roles of key genes, including genes within the MADS-box and AP2/ERF gene clusters, such as AP1, AP2, AP3, AG, STK, SHP, SEP, PI, and AGL6, as well as other genes, like NAP, SPL, TGA, PAN, and WOX, in shaping floral organ genesis. In addition, it analyzes the molecular-level effects of these genes on floral organ formation. The findings offer a deeper understanding of the genetic governance of floral organ genesis across plant species.
Read full abstract