It is frequently assumed that in the limit of vanishing cooling rate, the glass transition phenomenon becomes a thermodynamic transition at a temperature TK. However, with any finite cooling rate, the system falls out of equilibrium at temperatures near Tg(>TK), implying that the very existence of the putative thermodynamic phase transition at TK can be questioned. Recent studies of systems with randomly pinned particles have hinted that the thermodynamic glass transition may be observed for liquids with randomly pinned particles. This expectation is based on the results of approximate calculations that suggest that the thermodynamic glass transition temperature increases with increasing concentration of pinned particles and it may be possible to equilibrate the system at temperatures near the increased transition temperature. We test the validity of this prediction through extensive molecular dynamics simulations of two model glass-forming liquids in the presence of random pinning. We find that extrapolated thermodynamic transition temperature TK does not show any sign of increasing with increasing pinning concentration. The main effect of pinning is found to be a rapid decrease in the kinetic fragility of the system with increasing pin concentration. Implications of these observations for current theories of the glass transition are discussed.
Read full abstract