In this study, we propose a novel hybrid modeling framework for State of Charge (SOC) estimation across a broad temperature spectrum. First, we build a hybrid model to optimize stacked layers of stacked bidirectional long short term memory networks by introducing dropout mechanisms. At the same time, we also optimize the traditional multi-layer perceptron model to ResMLP, which is improved by introducing residual linkage, and then integrate the two optimization models. Finally, the synergistic effect and attention mechanism of genetic algorithm and particle swarm optimization are used to optimize its parameters. We then rigorously tested the model on nine datasets, including HPPC, DST and BBDST, at different temperatures of 5 °C, 15 °C and 35 °C. Using MAE, RMSE and MAXE benchmarks, our research results show that the proposed hybrid model outperforms the benchmark algorithm, achieving significantly enhanced performance and higher accuracy, and the maximum SOC estimation error is kept below 4.53 %. In addition, experimental evaluation at different temperatures shows the robustness and adaptability of the proposed algorithm.
Read full abstract