Periodically forced oscillatory reaction-diffusion systems may show complex spatiotemporal patterns. At high-frequency resonant forcing, multiple-phase patterns can be found. In the present work, the dynamics of turbulent CO oxidation on Pt(110), forced with the fourth harmonic of the system's natural frequency, is investigated. Experiments result in subharmonic entrainment, where the system locks to a quarter of the forcing frequency. Cluster patterns are observed, where different parts of the pattern show a defined phase difference. The experimental results are compared with numerical simulations using the realistic Krischer-Eiswirth-Ertl model for catalytic CO oxidation. Using the fourth harmonic of an uncoupled surface element's natural frequency, we find 3:1 entrainment with three-phase cluster patterns in a wide parameter range of forcing amplitudes and frequency detuning. Numerical analysis of the spatially extended, turbulent system reveals a remarkable upshift of the mean oscillation frequency compared to homogeneous oscillations. Using the fourth harmonic of the most prominent frequency found in the turbulent system results in four-phase patterns with partial or full 4:1 entrainment, depending on the forcing parameters chosen.
Read full abstract