AbstractClimate change is expected to increase the frequency and intensity of extreme weather events. To properly assess the increased economical risk of these events, actuaries can gain in relying on expert models/opinions from multiple different sources, which requires the use of model combination techniques. From non-parametric to Bayesian approaches, different methods rely on varying assumptions potentially leading to very different results. In this paper, we apply multiple model combination methods to an ensemble of 24 experts in a pooling approach and use the differences in outputs from the different combinations to illustrate how one can gain additional insight from using multiple methods. The densities obtained from pooling in Montreal and Quebec City highlight the significant changes in higher quantiles obtained through different combination approaches. Areal reduction factor and quantile projected changes are used to show that consistency, or lack thereof, across approaches reflects the uncertainty of combination methods. This shows how an actuary using multiple expert models should consider more than one combination method to properly assess the impact of climate change on loss distributions, seeing as a single method can lead to overconfidence in projections.