In product development, important specification and design decisions must be made at various stages of the lifecycle that include design, manufacturing, operations, and support. However, making these decisions becomes more complex when a multi-disciplinary team of stakeholders is involved in system-level or subsystem-level architecture and design decisions. Model-Based Engineering (MBE) approaches are enabling a digital thread of connected data and models. This work demonstrates a novel MBE approach that incorporates a model-based systems engineering (MBSE) method and a multi-criteria decision-making (MCDM) method to determine the best architecture solution that aligns with stakeholder needs and objectives over multiple domains. This approach demonstrates the connection of a system descriptive model, modeled using the systems modeling language (SysML), to underlying physics-based engineering models for the purpose of better predicting the technical performance of systems during the architecture development phase. This approach is demonstrated for a common aerospace communications application, a software-defined radio. This novel MBE approach supports digital transformation at organizations and allows for earlier design validation, enabling designers to test and select the best system architecture from many candidates and validate that the design meets stakeholder needs.