The finite-time synchronization problem is studied for coupled neural networks (CNNs) with time-delay jumping coupling. Markovian switching topologies, imprecise delay models, uncertain parameters and the unavailable of topology modes are considered in this work. A mode-dependent delay with pre-known conditional probability is built to handle the imprecise delay model problem. A hidden Markov model with uncertain parameters is introduced to describe the mode mismatch problem, and an asynchronous controller is designed. Besides, a set of Bernoulli processes models the random packet dropouts during data communication. Based on Markovian switching topologies, mode-dependent delays, uncertain probabilities and packet dropout, a sufficient condition that guarantees the CNNs reach finite-time synchronization (FTS) is derived. Finally, a numerical example is derived to demonstrate the efficiency of the proposed synchronous technique.
Read full abstract