Abstract

The finite-time synchronization problem is studied for coupled neural networks (CNNs) with time-delay jumping coupling. Markovian switching topologies, imprecise delay models, uncertain parameters and the unavailable of topology modes are considered in this work. A mode-dependent delay with pre-known conditional probability is built to handle the imprecise delay model problem. A hidden Markov model with uncertain parameters is introduced to describe the mode mismatch problem, and an asynchronous controller is designed. Besides, a set of Bernoulli processes models the random packet dropouts during data communication. Based on Markovian switching topologies, mode-dependent delays, uncertain probabilities and packet dropout, a sufficient condition that guarantees the CNNs reach finite-time synchronization (FTS) is derived. Finally, a numerical example is derived to demonstrate the efficiency of the proposed synchronous technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.