ConspectusSolid-supported amines are a promising class of CO2 sorbents capable of selectively capturing CO2 from diverse sources. The chemical interactions between the amine groups and CO2 give rise to the formation of strong CO2 adducts, such as alkylammonium carbamates, carbamic acids, and bicarbonates, which enable CO2 capture even at low driving force, such as with ultradilute CO2 streams. Among various solid-supported amine sorbents, oligomeric amines infused into oxide solid supports (noncovalently supported) are widely studied due to their ease of synthesis and low cost. This method allows for the construction of amine-rich sorbents while minimizing problems, such as leaching or evaporation, that occur with supported molecular amines.Researchers have pursued improved sorbents by tuning the physical and chemical properties of solid supports and amine phases. In terms of CO2 uptake, the amine efficiency, or the moles of sorbed CO2 per mole of amine sites, and uptake rate (CO2 capture per unit time) are the most critical factors determining the effectiveness of the material. While structure-property relationships have been developed for different porous oxide supports, the interaction(s) of the amine phase with the solid support, the structure and distribution of the organic phase within the pores, and the mobility of the amine phase within the pores are not well understood. These factors are important, because the kinetics of CO2 sorption, particularly when using the prototypical amine oligomer branched poly(ethylenimine) (PEI), follow an unconventional trend, with rapid initial uptake followed by a very slow, asymptotic approach to equilibrium. This suggests that the uptake of CO2 within such solid-supported amines is mass transfer-limited. Therefore, improving sorption performance can be facilitated by better understanding the amine structure and distribution within the pores.In this context, model solid-supported amine sorbents were constructed from a highly ordered, mesoporous silica SBA-15 support, and an array of techniques was used to probe the soft matter domains within these hybrid materials. The choice of SBA-15 as the model support was based on its ordered arrangement of mesopores with tunable physical and chemical properties, including pore size, particle lengths, and surface chemistries. Branched PEI─the most common amine phase used in solid CO2 sorbents─and its linear, low molecular weight analogue, tetraethylenepentamine (TEPA), were deployed as the amine phases. Neutron scattering (NS), including small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS), alongside solid-state NMR (ssNMR) and molecular dynamics (MD) simulations, was used to elucidate the structure and mobility of the amine phases within the pores of the support. Together, these tools, which have previously not been applied to such materials, provided new information regarding how the amine phases filled the support pores as the loading increased and the mobility of those amine phases. Varying pore surface-amine interactions led to unique trends for amine distributions and mobility; for instance, hydrophilic walls (i.e., attractive to amines) resulted in hampered motions with more intimate coordination to the walls, while amines around hydrophobic walls or walls with grafted chains that interrupt amine-wall coordination showed recovered mobility, with amines being more liberated from the walls. By correlating the structural and dynamic properties with CO2 sorption properties, novel relationships were identified, shedding light on the performance of the amine sorbents, and providing valuable guidance for the design of more effective supported amine sorbents.