In networks of mobile autonomous agents, e.g. for data acquisition, we may wish to maximize data transfer or to reliably transfer a minimum amount of data, subject to quality of service or energy constraints. These requirements can be guaranteed through both offline node design/specifications and online trajectory/communications design. Regardless of the distance between them, for a stationary point-to-point transmitter-receiver pair communicating across a single link under average power constraints, the total data transfer is unbounded as time tends to infinity. In contrast, we show that if the transmitter/receiver is moving at any constant speed away from each other, then the maximum transmittable data is bounded. Although general closed-form expressions as a function of communication and mobility profile parameters do not yet exist, we provide closed-form expressions for particular cases, such as ideal free space path loss. Under more general scenarios we instead give lower bounds on the total transmittable information across a single link between mobile nodes.
Read full abstract