A low temperature atomic layer deposition (ALD) process for PbO2was developed using bis(1-dimethylamino-2-methyl-2-propanolate)lead(II), Pb(DMAMP)2, and O3as the reactants, with a high growth rate of 2.6 Å/cycle. PbO2readily reduces under low oxygen partial pressures at moderate temperatures making it challenging to deposit ALD PbO2from Pb2+precursors. However, thin films deposited with this process showed small crystalline grains of α-PbO2and β-PbO2, without signs of reduced PbOxphases. The ALD PbO2thin films show the high electrical conductivity characteristic of bulk PbO2. In situ measurements of ALD PbO2film conductivity during growth suggest a reaction mechanism by which sub-surface oxygen mobility contributes to the growth of resistive PbO or PbOxduring the Pb(DMAMP)2surface reaction step, which is only fully oxidized from Pb2+to Pb4+during the O3reaction step. These films were electrochemically reduced to PbSO4in H2SO4and then reoxidized to PbO2, demonstrating their suitability for use as an electrode material for fundamental battery research and other electrochemical applications.
Read full abstract