Background Smartphones and wearables are revolutionizing the assessment of cognitive and motor function in neurological disorders, allowing for objective, frequent, and remote data collection. However, these assessments typically provide a plethora of sensor-derived measures (SDMs), and selecting the most suitable measure for a given context of use is a challenging, often overlooked problem. Objective This analysis aims to develop and apply an SDM selection framework, including automated data quality checks and the evaluation of statistical properties, to identify robust SDMs that describe the cognitive and motor function of people with multiple sclerosis (MS). Methods The proposed framework was applied to data from a cross-sectional study involving 85 people with MS and 68 healthy participants who underwent in-clinic supervised and remote unsupervised smartphone-based assessments. The assessment provided high-quality recordings from cognitive, manual dexterity, and mobility tests, from which 47 SDMs, based on established literature, were extracted using previously developed and publicly available algorithms. These SDMs were first separately and then jointly screened for bias and normality by 2 expert assessors. Selected SDMs were then analyzed to establish their reliability, using an intraclass correlation coefficient and minimal detectable change at 95% CI. The convergence of selected SDMs with in-clinic MS functional measures and patient-reported outcomes was also evaluated. Results A total of 16 (34%) of the 47 SDMs passed the selection framework. All selected SDMs demonstrated moderate-to-good reliability in remote settings (intraclass correlation coefficient 0.5-0.85; minimal detectable change at 95% CI 19%-35%). Selected SDMs extracted from the smartphone-based cognitive test demonstrated good-to-excellent correlation (Spearman correlation coefficient, |ρ|>0.75) with the in-clinic Symbol Digit Modalities Test and fair correlation with Expanded Disability Status Scale (EDSS) scores (0.25≤|ρ|<0.5). SDMs extracted from the manual dexterity tests showed either fair correlation (0.25≤|ρ|<0.5) or were not correlated (|ρ|<0.25) with the in-clinic 9-hole peg test and EDSS scores. Most selected SDMs from mobility tests showed fair correlation with the in-clinic timed 25-foot walk test and fair to moderate-to-good correlation (0.5<|ρ|≤0.75) with EDSS scores. SDM correlations with relevant patient-reported outcomes varied by functional domain, ranging from not correlated (cognitive test SDMs) to good-to-excellent correlation (|ρ|>0.75) for mobility test SDMs. Overall, correlations were similar when smartphone-based tests were performed in a clinic or remotely. Conclusions Reported results highlight that smartphone-based assessments are suitable tools to remotely obtain high-quality SDMs of cognitive and motor function in people with MS. The presented SDM selection framework promises to increase the interpretability and standardization of smartphone-based SDMs in people with MS, paving the way for their future use in interventional trials.