One of the most important tasks in sensor networks is to determine the physical location of sensory nodes as they may not all be equipped with GPS receivers. In this paper we propose a localization method for wireless sensor networks (WSNs) using a single mobile beacon. The sensor locations are maintained as probability distributions that are sequentially updated using Monte Carlo sampling as the mobile beacon moves over the deployment area. Our method relieves much of the localization tasks from the less powerful sensor nodes themselves and relies on the more powerful beacon to perform the calculation. We discuss the Monte Carlo sampling steps in the context of the localization using a single beacon for various types of observations such as ranging, Angle of Arrival (AoA), connectivity and combinations of those. We also discuss the communication protocol that relays the observation data to the beacon and the localization result back to the sensors. We consider security issues in the localization process and the necessary steps to guard against the scenario in which a small number of sensors are compromised. Our simulation shows that our method is able to achieve less than 50% localization error and over 80% coverage with a very sparse network of degree less than 4 while achieving significantly better results if network connectivity increases.
Read full abstract