We present the development of an electrochemical formation method that enables rapid and in-situ formation of a partially disordered spinel phase from an initially disordered rocksalt (DRX) cathode. Recent studies on Mn-rich DRX materials have demonstrated the emergence of a spinel-like phase during cycling, resulting in improved capacity retention, energy density, and rate capability compared to materials which do not transform1,2,3. However, this transformation process typically requires weeks of cycling at relatively low rates, posing significant challenges for the commercialization of such materials.To gain a deeper understanding of this transformation process, we carry-out a systematic study to determine whether the formation process of these spinel-like materials can be accelerated through a precycling formation process. By employing a novel electrochemical approach to purposefully stimulate the transformation, we successfully reduce the time required from several weeks to as little as one day for Mn-rich DRX. Extended cycling and synchrotron X-ray diffraction confirm that these materials exhibit both equivalent performance and resulting structure to those obtained through conventional cycling over a much longer duration. Further characterization of this material using HAADF and 4-D STEM reveals the complex local structure of the spinel-like partial ordering. It is hoped that such a practical electrochemical formation method will allow for an acceleration of research on these earth-abundant and energy-dense materials. Li, L.; Lun, Z.; Chen, D.; Yue, Y.; Tong, W.; Chen, G.; Ceder, G.; Wang, C. Fluorination-Enhanced Surface Stability of Cation-Disordered Rocksalt Cathodes for Li-Ion Batteries. Adv Funct Mater 2021, 31 (25), 2101888. https://doi.org/10.1002/adfm.202101888.Ahn, J.; Giovine, R.; Wu, V. C.; Koirala, K. P.; Wang, C.; Clément, R. J.; Chen, G. Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes. Adv. Energy Mater. 2023. https://doi.org/10.1002/aenm.202300221. Cai, Z.; Ouyang, B.; Hau, H.-M.; Chen, T.; Giovine, R.; Koirala, K. P.; Li, L.; Ji, H.; Ha, Y.; Sun, Y.; Huang, J.; Chen, Y.; Wu, V.; Yang, W.; Wang, C.; Clément, R. J.; Lun, Z.; Ceder, G. In Situ Formed Partially Disordered Phases as Earth-Abundant Mn-Rich Cathode Materials. Nat. Energy 2023, 1–10. https://doi.org/10.1038/s41560-023-01375-9.