Abstract

Manganese could be the element of choice for cathode materials used in large-scale energy storage systems owing to its abundance and low toxicity levels. However, both lithium- and sodium-ion batteries adopting this electrode chemistry suffer from rapid performance fading, suggesting a major technical barrier that must be overcome. Here we report a P3-type layered manganese oxide cathode Na0.6Li0.2Mn0.8O2 (NLMO) that delivers a high capacity of 240 mAh g−1 with outstanding cycling stability in a lithium half-cell. Combined experimental and theoretical characterizations reveal a characteristic topological feature that enables the good electrochemical performance. Specifically, the -α-γ- layer stack provides topological protection for lattice oxygen redox, whereas reversibility is absent in P2-structured NLMO, which takes an -α-β- configuration. The identified new order parameter opens an avenue towards the rational design of reversible Mn-rich cathode materials for sustainable batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.