Accurate marine wind detection under all-weather conditions is crucial for maritime activities. The joint detection of lidar and radar is supposed to be a potential way to carry out the all-weather sensing of wind. However, their performance analysis has not been well studied, particularly in the far sea area, where the wind-tracing particles are quite different from those inland. Based on the particle distributions above the sea surface under different weather conditions, this study investigated the scattering and attenuation effects of lidar and radar waves in open sea areas with the Mie theory and T-matrix method. Then, the maximum detection range and velocity accuracies of lidar/radar were comprehensively analyzed based on detection principles to optimize the combination of lidar and radar. According to the simulation results, it was difficult to maintain the detection capability of a single lidar/radar under all-weather conditions, and 1.55 μm lidar and W-band radar presented a promising joint detection scheme, as they exhibited optimal weather adaptability in clear sky and precipitation conditions, respectively.
Read full abstract