To examine the conventional idea that the gauche conformation of the OCCO dihedral angle promotes the dissolution of polyethylene glycol (PEG) in water through strong hydration, the thermodynamic properties of liquid mixtures of PEG and water were studied by means of polymer reference interaction site model (PRISM) theory. The intramolecular correlation functions required as input for PRISM theory were calculated by the generator matrix method, accompanied by changes in the distribution of dihedral angles. In the infinite dilution limit, the increased probability of gauche conformation of the OCCO dihedral angles stabilizes the hydration of PEG through enhanced hydrogen bonding between the ether oxygen of PEG and water. The mixing Gibbs energies of the liquid mixtures were also calculated in the whole concentration range based on the Gibbs-Duhem equation, as per our recent proposal. A liquid-liquid phase separation was observed when all the dihedral angles of PEG were in the trans conformation; for the liquid mixture to be miscible in the whole concentration range, the introduction of the OCCO gauche conformation was found to be indispensable. The above theoretical results support the conventional idea that the OCCO gauche conformation is important for the high miscibility of PEG and water.
Read full abstract