Abstract Herein, the aggregation manner of the mixture of polyvinyl alcohol (PVA) and tetradecyltrimethylammonium bromide (TTAB) was performed in polyols (glucose, maltose and galactose) media over 300.55–320.55 K temperatures range with 5 K interval through conductivity measurement method. The micelle formation of TTAB + PVA mixture was identified by the assessment of critical micelle concentration (CMC) from the plots of specific conductivity (κ) versus TTAB concentration. The degree of micelle ionization (α), the extent of bound counter ions (β) as well as thermodynamic properties ( Δ G m 0 ${\Delta}{G}_{m}^{0}$ , Δ H m 0 ${\Delta}{H}_{m}^{0}$ and Δ S m 0 ${\Delta}{S}_{m}^{0}$ ) of TTAB + PVA systems have been estimated. The CMC values reveal that the micelle formation of TTAB + PVA mixture experience an enhancement in the manifestation of polyols. The values of free energy of micellization ( Δ G m 0 ${\Delta}{G}_{m}^{0}$ ) are negative for the TTAB + PVA system in aqueous polyols media, suggesting a spontaneous aggregation phenomenon. The Δ H m 0 ${\Delta}{H}_{m}^{0}$ and Δ S m 0 ${\Delta}{S}_{m}^{0}$ values of TTAB + PVA systems direct that the PVA molecule interacts with TTAB through the exothermic, ion-dipole, and hydrophobic interactions. The thermodynamic properties of transfer were also determined for the move of TTAB + PVA mixture from H2O to water + polyols mixed solvents. The values of compensation temperature (T c) and intrinsic enthalpy gain ( Δ H m 0 , ∗ ${\Delta}{H}_{m}^{0,\ast }$ ) were evaluated and discussed for the studied system.