Zinc porphyrins are potential candidates for boosting the advancement of various technological applications, including those exploring the molecule's radiative emissions. In this work, the excitation dependence of fluorescence spectra from 5,10,15,20-meso-tetrapyridyl zinc(II) porphyrin dissolved in a binary solvent mixture of CHCl3: MeOH, is reported. Important modifications in the profiles of the fluorescence bands are observed after exciting the molecules in a broad wavelength range from 350 to 565 nm. We attribute such modifications to the existence of two distinct relaxation pathways, related to two quasi-degenerated potential energy surfaces (PES) in the ZnTPyP's first excited state whose population rates changes for different excitation wavelengths. We also observed that by changing the CHCl3:MeOH proportion in the binary mixture, a quenching mechanism mediated by the MeOH hydrogen bondings and ZnTPyP takes place, which allows for tuning the excitation dependence of the aforementioned relaxations pathways. Moreover, our data confirm that the addition of outlying RuCl(dppb)(bipy) ruthenium complex linked to the pyridyl moieties of the ZnTPyP ring is also an excellent strategy to modify the excitation dependence of the fluorescence relaxation pathways.