A mixed function is a real analytic map f:Cn→C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f:\\mathbb {C}^n\\rightarrow \\mathbb {C}$$\\end{document} in the complex variables z1,⋯,zn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z_1,\\dots ,z_n$$\\end{document} and their conjugates z¯1,⋯,z¯n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\bar{z}_1,\\dots ,\\bar{z}_n$$\\end{document}. In this article, we define an integer valued index for vector fields v with isolated singularity at 0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{0}$$\\end{document} on real analytic varieties Vf:=f-1(0)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V_f:=f^{-1}(0)$$\\end{document} defined by mixed functions f with isolated critical point at 0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{0}$$\\end{document}. We call this index the mixed GSV index and it generalizes the classical GSV index defined by Gomez-Mont, Seade and Verjovsky in (Math Ann 291(4):737–751, 1991), i.e., if the function f is holomorphic, then the mixed GSV index coincides with the GSV index. Furthermore, the mixed GSV index is a lifting to Z\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {Z}$$\\end{document} of the Z2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {Z}_2$$\\end{document}-valued real GSV index defined by Aguilar, Seade and Verjovsky in Aguilar et al. (J Reine Angew Math 504:159–176, 1998). As applications, we prove that the mixed GSV index is equal to the Poincaré–Hopf index of v on a Milnor fiber. If f also satisfies the strong Milnor condition, i. e., for every ϵ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon >0$$\\end{document} (small enough), the map f‖f‖:Sϵ\\Lf→S1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{f}{\\Vert f\\Vert }:\\mathbb {S}_\\epsilon {\\setminus } L_f \\rightarrow \\mathbb {S}^1$$\\end{document} is a fiber bundle, we prove that the mixed GSV index is equal to the curvatura integra of f defined by Cisneros-Molina, Grulha and Seade in (Int J Math 25(7): 1450069, 2014) based on the curvatura integra defined by Kervaire in (Courbure integrale generalisee et homotopie., Mathematische Annalen, pp. 219–252, 1956).
Read full abstract