Abstract

AbstractThe study investigates effect of particle shape on gas bypassing and mixing of gas‐fluidized Geldart A particles. A shallow fluidized bed (FB), configured at benchscale, was used with digital image analysis (DIA) for the investigation. The extent of scatter of tracer particles throughout the bed was assessed from DIA images of defluidized powder. A novel method employing Jupyter notebook software, was used to directly determine Mixing Index from digital images. Remarkably, platelet‐shaped China clay powder displayed the best mixing characteristics (Mixing Index: 0.79) with no significant bypassing. Angular shaped Quartz displayed moderate mixing (Mixing Index: 0.67), but high bypassing (Bypassing Index: 0.75). Contrary to conventional assumptions, spherical‐shaped diatomite exhibited poor mixing (Mixing Index: 0.61) with the highest bypassing (Bypassing Index: 0.82). Platelet particles performed well even with fines removal. Most likely, particle shape significantly influenced the number of available particle contact points, tracer migration, and traceronparticle binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.