Pyrrolizidine alkaloids are secondary metabolites produced by plants as a defense against insects. These can cause acute or chronic toxicity in humans. Therefore, avoiding potential poisoning from the consumption of tea and culinary plants contaminated with pyrrolizidine alkaloids (PAs), pyrrolizidine alkaloids N-oxides (PANOs), and tropane alkaloids (TAs) is important for human health and food safety. Therefore, it is important to determine the levels of these substances with reliable and highly accurate methods. In this study, the PAs, PANOs, and TAs in herbal teas and culinary herbs sold in Turkish markets were identified and their levels were determined. Thus, the general profiles of herbal teas and culinary herbs in Turkey were revealed, and the compliance of the total amounts of PA and TA with the regulations was examined. The identification and quantification of 25 PAs and N-oxides and 2 TAs (atropine and scopolamine) in the samples was performed with a liquid chromatography-quadrupole time-of-flight tandem mass spectrometer (LC-Q-ToF/MS). At least a few of these substances were detected in all of the tested herbal teas and culinary herbs. The total contents of the black tea, green tea, mixed tea, flavored tea, chamomile tea, sage tea, linden tea, fennel tea, rosehip tea, peppermint, and thyme samples ranged from 4.6 ng g-1 to 1054.5 ng g-1. The results obtained shed light on the importance of analyzing the total dehydro PA, PANO, and TA amounts in plant-based products consumed in diets with sensitive and accurate methods, and they highlight the necessity of performing these analyses routinely in terms of food safety.
Read full abstract