The Florida Department of Transportation (FDOT) has recently started implementing a new signal system at mid-blocks called Mid-block Pedestrian Signals (MPS). This study aims to evaluate the effectiveness of these newly implemented MPSs. A total of 260h of video data were collected from five locations across Florida, with 130h recorded before MPS installation and 130h after installation, including both weekdays and weekends. State-of-the-art computer vision technology was employed to detect and track various road users. A random parameters multinomial logit model with heterogeneity in the means was implemented to assess safety of vehicle-pedestrian interaction by three conflict categories: No Conflict, Moderate Conflict, and Serious Conflict. Relative-Time-to-Collision (RTTC) values were utilized to classify these level of conflicts. The analysis demonstrates that the presence of MPS significantly enhances safety outcomes by increasing the likelihood of avoiding conflicts and reducing the probabilities of both moderate and serious conflicts. Key factors influencing conflict probabilities were identified, including pedestrian and vehicle counts, average leading vehicle speed, standard deviation of leading vehicle speeds, and land-use mix, all of which increase the probability of serious conflicts. Interestingly, the analysis identified three significant interaction variables with MPS: average leading vehicle speed, standard deviation of leading vehicle speeds, and land-use mix. While these factors individually had a higher probability of leading to serious conflicts, the presence of MPS effectively mitigates these risks by moderating their adverse effects, increasing the likelihood of no conflicts. These results underscore the importance of MPS as an effective measure to improve safety at mid-block crossings.
Read full abstract