The bioprocessing strategy is an effective approach to improve bioavailability and stability of bioactive compounds for designing functional foods and ingredients. In this study, food barley was bio-transformed to improve functional bioactives by sprouting, coupled with beneficial lactic acid bacteria (LAB)-based fermentation. Dairy Kefir culture with mixed beneficial LAB strains was targeted to ferment aqueous slurries of sprouted hulless food barley flour (unpigmented, purple, and black barley) for 72 h, and modulation of phenolic-linked antioxidant and anti-hyperglycemic functionalities were evaluated using in vitro assay models. The biochemical parameters analyzed were total soluble phenolic (TSP) content, profile of phenolic compounds, total antioxidant activity, and anti-hyperglycemic property-relevant α-amylase and α-glucosidase enzyme inhibitory activities. Furthermore, human gut health benefits of relevant properties of fermented slurries of barley flour were also evaluated based on growth of Kefir culture and subsequent determination of anti-bacterial potential against pathogenic human ulcer causing bacteria Helicobacter pylori. Kefir culture-mediated fermentation of 48-h sprouted barley flours improved the TSP content and associated antioxidant and anti-hyperglycemic functionalities. Additionally, anti-bacterial potential against H. pylori and sustaining active growth of viable LAB cells above the minimum level required for probiotic activity were also observed in fermented food barley flour slurries.
Read full abstract