Targeted marketing strategies are of significant interest in the smartapp economy. Typically, one seeks to identify individuals to strategically target in a social network so that the network is influenced at a minimal cost. In many practical settings, the effects of direct influence predominate, leading to the positive influence dominating set with partial payments (PIDS-PP) problem that we discuss in this paper. The PIDS-PP problem is NP-complete because it generalizes the dominating set problem. We discuss several mixed integer programming formulations for the PIDS-PP problem. First, we describe two compact formulations on the payment space. We then develop a stronger compact extended formulation. We show that when the underlying graph is a tree, this compact extended formulation provides integral solutions for the node selection variables. In conjunction, we describe a polynomial-time dynamic programming algorithm for the PIDS-PP problem on trees. We project the compact extended formulation onto the payment space, providing an equivalently strong formulation that has exponentially many constraints. We present a polynomial time algorithm to solve the associated separation problem. Our computational experience on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) demonstrates the efficacy of our strongest payment space formulation. It finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality. Summary of Contribution: The study of influence propagation is important in a number of applications including marketing, epidemiology, and healthcare. Typically, in these problems, one seeks to identify individuals to strategically target in a social network so that the entire network is influenced at a minimal cost. With the ease of tracking consumers in the smartapp economy, the scope and nature of these problems have become larger. Consequently, there is considerable interest across multiple research communities in computationally solving large-scale influence maximization problems, which thus represent significant opportunities for the development of operations research–based methods and analysis in this interface. This paper introduces the positive influence dominating set with partial payments (PIDS-PP) problem, an influence maximization problem where the effects of direct influence predominate, and it is possible to make partial payments to nodes that are not targeted. The paper focuses on model development to solve large-scale PIDS-PP problems. To this end, starting from an initial base optimization model, it uses several operations research model strengthening techniques to develop two equivalent models that have strong computational performance (and can be theoretically shown to be the best model for trees). Computational experiments on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) attest to the efficacy of the best model, which finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality.