Recent developments in modelling and optimization approaches for the production of mineral and energy resources have resulted in new simultaneous stochastic optimization frameworks and related digital technologies. A mining complex is a type of value chain whereby raw materials (minerals) extracted from various mineral deposits are transformed into a set of sellable products, using the available processing streams. The supply of materials extracted from a group of mines represents a major source of uncertainty in mining operations and mineral value chains. The simultaneous stochastic optimization of mining complexes, presented herein, aims to address major limitations of past approaches by modelling and optimizing several interrelated aspects of the mineral value chain in a single model. This single optimization model integrates material extraction from a set of sources along with their uncertainty, the related risk management, blending, stockpiling, non-linear transformations that occur in the available processing streams, the utilization of processing streams, and, finally, the transportation of products to customers. Uncertainty in materials extracted from the related mineral deposits of a mining complex is represented by a group of stochastic simulations. This paper presents a two-stage stochastic mixed integer nonlinear programming formulation for modelling and optimizing a mining complex, along with a metaheuristic-based solver that facilitates the practical optimization of exceptionally large mathematical formulations. The distinct advantages of the approach presented herein are demonstrated through two case studies, where the stochastic framework is compared to past approaches that ignore uncertainty. Results demonstrate major improvements in both meeting forecasted production targets and net present value. Concepts and methods presented in this paper for the simultaneous stochastic optimization for mining complexes may be adopted and applied to the optimization of smart oil fields.