Isolated mammalian (Chinese hamster ovary [CHO]) metaphase spindles were found to be enriched in a histone H1 kinase whose activity was mitotic-cycle dependent. Two substrates for the kinase were identified as MAP1B and MAP4. Partially purified spindle kinase retained activity for the spindle microtubule-associated proteins (MAPs) as well as brain and other tissue culture MAPs; on phosphorylation, spindle MAPs exhibited increased immunoreactivity with MPM-2, a monoclonal antibody specific for a subset of mitotic phosphoproteins. Immunofluorescence using an anti-thiophosphoprotein antibody localized in vitro phosphorylated spindle proteins to microtubule fibers, centrosomes, kinetochores, and midbodies. The fractionated spindle kinase was reactive with anti-human p34cdc2 antibodies and with an anti-human cyclin B but not an anti-human cyclin A antibody. We conclude that spindle MAPs undergo mitotic cycle-dependent phosphorylations in vivo and associate with a kinase that remains active on spindle isolation and may be related to p34cdc2.
Read full abstract