The mitogen-activated protein kinase (MAPK) signaling cascade, integral to cellular regulation, orchestrates cell growth, differentiation, stress response, and inflammatory reactions to adapt to challenging environments. The northern snakeheads (Channa argus), a valuable freshwater species known for its hypoxia tolerance, rapid growth, and high nutritional value, lacks comprehensive research on its mapk gene family. In this study, we identified 16 mapk genes in northern snakeheads, among which mapk8, mapk12 and mapk14 have duplicate copies. Phylogenetic analysis confirmed the evolutionary conservation of this gene family. Structural and motif analyses further underscored the conserved nature of these genes. Expression pattern analysis under abiotic and biotic stress conditions showed significant differences expression of mapks in the gills and suprabranchial organ (SBO) after air exposure, as well as in the brain following cold stress, highlighting the extensive role of mapks in stress regulation. It was worth noting that the significant expression differences of mapks were also observed in the spleen after N. seriolae infection, implicating that these genes may be involved in the regulation of innate immune responses. Additionally, analysis of protein-protein interaction (PPI) networks suggested that the co-activation of multiple MAPK signaling pathways may play a key role in regulating an organism's response to biotic and abiotic stresses. This study provides a detailed description of the mapk gene family in the northern snakeheads and elucidates its biological functions under various stress conditions, offering valuable insights into the regulatory mechanisms of the mapk gene family.
Read full abstract