Mitochondria remain active in postmortem muscles and can influence meat color via oxygen consumption. Previous studies have shown that dark-cutting compared with normal-pH beef has greater mitochondrial protein and DNA content per gram of muscle tissue. However, the mechanism regulating mitochondrial content in dark-cutting vs. normal-pH beef is still unknown. Therefore, the objective was to compare mitochondrial proteomes of dark-cutting vs. normal-pH beef using LC-MS/MS-based proteomics and mitochondrial respiratory capacity using a Clark oxygen electrode. Dark-cutting compared with normal-pH beef has up-regulation of proteins involved in mitochondrial biogenesis, oxidative phosphorylation, intracellular protein transport, and cellular calcium ion homeostasis. Mitochondria isolated from dark-cutting phenotypes showed greater mitochondrial complex II respiration and uncoupled oxidative phosphorylation. However, mitochondrial membrane integrity and respiration at complexes I and IV were not different between normal-pH and dark-cutting beef. These results indicate that dark-cutting beef has greater mitochondrial biogenesis proteins than normal-pH beef, increasing mitochondrial content and contributing to dark-cutting beef. SignificanceDefective glycogen metabolism resulting from chronic stress before slaughter coupled with the greater mitochondrial protein and DNA content per gram of muscle tissue promotes muscle darkening in dark-cutting phenotypes in beef. However, the mechanistic basis for this occurrence in dark-cutting phenotypes is still unknown. In this work, we show that dark-cutting beef phenotype is caused, in part, as a consequence of over-proliferation of mitochondria. This is supported by the up-regulation of proteins involved in mitochondrial biogenesis, mitochondrial electron transport, calcium homeostasis, and fatty acid metabolism. Hence, the study of mitochondrial proteome changes provides a set of mitochondrial biogenesis proteins that could be used as potential candidate markers for detecting changes in pre-slaughter developmental events contributing to dark-cutting phenotypes in beef.
Read full abstract