Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However, we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis, particularly in the late stage, where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus, we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge, the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this, we generated inducible TRIB3 overexpression hESCs, named TRIB3tet-on OE H9, based on a Tet-On system. Then, we analyzed hemoglobin expression, condensed chromosomes, organelle clearance, and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry, enhanced hemoglobin and related protein expression in Western blot, decreased nuclear area size, promoted enucleation rate, decreased lysosome and mitochondria number, more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 μg/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore, our study delineates the role of TRIB3 in terminal erythropoiesis, and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin.
Read full abstract