Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA. Microglial metabolic status was assessed by measuring lactate release and cellular ATP by enzymatic and luminescence spectrophotometry. Mitochondrial functionality was analyzed by fluorescent probes detecting mitochondrial membrane potential (mtMP) and superoxide production. Our findings suggest that kinase pathways associated with hypoxia-inducible factor-1α (HIF-1α) regulate energy metabolism in pro-inflammatory activated microglia. We have shown that LPS induces HIF-1α and genes for glucose transporter and glycolytic rate, increases lactate production and causes mitochondrial dysfunction, suggesting a metabolic shift towards glycolysis. Agmatine inhibits the PI3K/Akt pathway and negatively regulates mammalian target of rapamycin (mTOR) phosphorylation and HIF-1α levels, reducing lactate and tumor necrosis factor (TNF) production, which is supported by pharmacological blockade of PI3K. Pretreatment with agmatine also rescues mitochondrial function by counteracting the LPS-induced decline in mtMP and increase in mitochondrial superoxide, resulting in an anti-apoptotic effect. Agmatine alone increases intracellular ATP levels and maintains this effect even under pro-inflammatory conditions. Our study emphasizes the ability of agmatine to engage in metabolic reprogramming of pro-inflammatory microglia through increased ATP production and modulation of signaling pathway involved in promoting glycolysis and cytokine release.
Read full abstract