The Lunnan oilfield in the Tarim Basin, one of China’s major onshore oilfields with substantial geological reserves, faces particular challenges due to the complexity of its reservoir environment and the dispersion of remaining oil. Carbon dioxide, a greenhouse gas, presents an opportunity for enhanced oil recovery (EOR) and geological storage. In this context, the use of carbon dioxide for EOR can simultaneously address environmental concerns and improve oil recovery rates. This study focuses on the TI reservoir in the No. 2 well area of the Lunnan oilfield, employing advanced techniques to analyze the micro- and macro-characteristics of carbon dioxide flooding. Results: From the microscopic point of view, carbon dioxide flooding is mainly miscible with crude oil, which has a strong component exchange effect and can be displaced in the form of full pores, and the microscopic displacement efficiency is close to 100%. Macroscopically, under the combined injection and production of different injected hydrocarbon pore volume multiples (HCPVs), it is injected at the upper and lower layers of the interlayer and produced far away from the lower layer of the interlayer, with a total recovery rate of 52.83%. With the increase in the HCPV, the recovery increased rapidly at first and then slowly, and the HCPV at the demarcation point was 0.5, while the oil production rate increased in a wave-like manner and then decreased rapidly, and the HCPV at the breakthrough point of TI gas was 0.5. However, when the upper and lower layers far away from the interlayer are injected at the same time, the upper and lower layers of the interlayer are produced at the same time, and the total recovery rate can reach 83.02%. With the increase in the HCPV, the recovery rate increases rapidly at first and then slowly, and the HCPV at the turning point is 6.52. The oil production rate increases in a wave-like manner, then decreases rapidly, rises rapidly, and then decreases slowly in a wave-like manner. The HCPV at the breakthrough point of TI gas is 0.63, and the HCPV at the injection–production transition point is 0.63. The total recovery rate of carbon dioxide miscible displacement can reach 88.68% under the condition of separate injection and combined production with different injected hydrocarbon pore volume multiples. With the increase in the HCPV, the recovery increased rapidly at first and then slowly. The HCPV at the demarcation point was 6.5, the oil production rate increased in a wave-like manner, then decreased rapidly, increased rapidly, and then decreased slowly in a wave-like manner. The HCPV at the breakthrough point of TI gas was 0.63, and the HCPV at the injection–production transition point was 6.5. The research results provide data support for the physical reality of the microscopic and macroscopic sweep characteristics of carbon dioxide flooding in the Lunnan oilfield, Tarim Basin.